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Design Parameters for Borehole Strain Instrumentation

MICHAEL T. GLADWIN! AND RHODES HART!

Abstract—The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic
medium is calculated to facilitate optimum instrument design and produce instrument response factors
for parameters typically encountered in installed instruments. Results for an empty borehole are first
compared with results for an instrument in intimate contact with the surrounding rock. The effects of
the grout used to install the instrument are then examined. Where possible, analytic forms for the response
factors are given. Results for typical installations are then presented in graphical form for optimizing
instrument design in an environment of known elastic parameters. Alternatively, the results may be applied
in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ
estimates of the elastic properties of the environment by examination of observed strain response to known
strain signals.
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Introduction

An important recent development in earth strain monitoring studies is the real-
ization that to reliably monitor the small strains encountered and to avoid extensive
contamination of the record with near-surface disturbances, strain meters should be
installed at depths of at least one hundred metres in competent rock. Borehole
hydrostatic-strain instruments have been in operation for more than ten years (SACKS
et al., 1971), and recently two instruments capable of measuring both hydrostatic and
shear strain have been installed in California (GLADWIN, 1984). The latter instruments
resolve strain to 30 picostrain in the horizontal plane by three measurements (in the
typical strain rosette pattern) of the radial deformation of a cylinder wall grouted
into the borehole with expanding cement. This paper provides an understanding of
the isotropic elastic behavior of such inclusions for calculation of the far-field strains
in the host rock from the observed cylinder deformations, and for optimising the design
of such instruments. A previous derivation (JAEGER and CooK, 1976, chap. 10.4)
considers a single inclusion in horizontal boreholes. SAKATA et al. (1982) mention
the effect of the grout but do not explicitly include it in their solutions. Omission
of the effects of the grout limits the usefulness of their solutions. The effect of anisotropy
of the host rock on the stresses in a borehole with a single inclusion has been examined
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by AMADEI (1983). Such effects, though no doubt significant in many practical
situations, are not included in this analysis, but are not a first priority for treatment
of actual installed instruments.

Observed deformations of the inner wall of an instrument grouted in a hole
are determined by the elastic moduli of the surrounding rock, the grout material,
and the material of which the instrument is made, the diameter of the borehole and
the instrument package, and the wall thickness of the instrument. For insight into
the effects of these nine parameters three increasingly complex models are examined.
The first introduces the nomenclature chosen and provides a description of the
deformation of the wall of an empty borehole. The second model, the single-ring model,
considers the effect of installing an instrument with annular cross-ection in intimate
contact with the rock. The third model presents the effects of a grout introduced
between the instrument and the rock wall. This two-ring model is a critical case for
downhole strain instrumentation since grouts are commonly used for coupling and
preload for the instrument implant.

The paper divides into two sections. In the first section the equations describing
the instrument behaviour for each of the models are derived. These are then used
in the second section to illustrate in graphical form the instrument response for typical
parameters encountered. This graphical presentation becomes necessary because there
are many complex interactions of the nine basic parameters involved and because
it is not feasible to present analytic solutions in sufficiently concise and usable form.
Scaled moduli and instrument geometries are used on all graphs so that they may
be applied directly in instrument design or in inversion of observed data to remote
strain fields.

Section 1. Theory

A. Introduction

There are two stages in the derivation of far-field strain in the host rock from
measurements of the radial deformation of the instrument wall. The first derives the
radial deformation U, of the inner instrument wall expressed as a function of the
far-field principal strains in the rock and the angle between the radius where the
deformation is observed and the axis of maximum compression. This function will
have as parameters the elastic constants of the instrument, the grout, and the rock,
and the hole and instrument radii. In the second stage the set of three such equations
for observations of radial deformation at three different points spaced 60 degrees apart
is inverted so as to express the principal strains and their direction as functions of
the three observations.

For strains measured in the plane perpendicular to a vertical borehole, the
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boundary condition imposed on the vertical dimension is significant. In the present
analysis the assumption of plane stress for stress changes has been made, where stress
is considered constant in the vertical direction owing to the presence of the nearby
free surface. Results for the plane-strain assumption may be derived from the present
analysis by modification of the parameter y, as noted below.

B. Conventions and symbols

In this work the elasticity convention of compression as negative strain will be
used, and the X axis will be fixed as the axis of maximum compression.

Regions of the installed instrument are numbered as follows: I, instrument;
2, grout; 3, rock.

The following symbols are used.

R; Inner radius of region i

N; R3/R;; e.g., N is the ratio of hole radius to instrument inner-wall radius
E; Young’s modulus

K; Bulk modulus

Gi Rigidity

Vi Poisson’s ratio

X (3 —v)/(1 + v) for plane stress; (3 — 4v) for plane strain

U, Radial displacement

0 Angle measured clockwise from the axis of maximum compression
o Principal stress

€ Principal strain

P Uniaxial stress

14 Areal stress = (01 + 02)/2; for plane stress V = volumetric stress

S Shear stress = (0, — 63)/2

v Areal strain = (g1 + £)/2; planar hydrostatic strain.

A Dilation strain; for plane stress A = 2v(1 — 2v)/(1 — v)

s Shear strain = —(g; — &3)/2

C. Basic theory

For each model it will be shown that the radial displacement of the instrument’s
inner wall at angle 0 clockwise from a uniaxial stress P applied at a large distance
compared with the borehole diameter can be expressed as

UdAri) = R1P/8G1(a + b cos 26) (1)

where a and b are dimensionless constants, functions of the elastic constants and the
radii.
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The displacement arising from principal stresses o1 and o2, where o, is the principal
stress of maximum compression (most negative) and 6 is measured clockwise from
above from the X axis, is then given by

UAR;) = (R1/8G1)[alo1 + 02) + b(o; — 62) cos 20]

= (R1/4G1)(aV — bS cos 20) ¥

The apparent instrument in-situ bulk and shear moduli, K and G, defined as
K=3U,/R1 for $=0 (3)
G= i for V=0 (4)

U,/Ry
are then calculated from equation 2 to be

K =4G,/3a (%)
G =4G,/b (6)

For plane stress, areal and shear stresses are related to equivalent strains by the
equations

_ (1 +v3)
V—Z(I“v3)va (7
S = 2Gss (8)

By means of equations 7 and 8 the radial displacement in equation 2 can be
expressed in terms of the areal and shear strains as

U, = Ry(cv — ds cos 26) 9)
where
_a(l +v3)Gs
€= 21 —v3)G o
bG,
dmoe (11)

The constants ¢ and d of equation 9 may be viewed as the hydrostatic and shear
response factors for the in-situ instrument.

From equation 9 we have the following for three measurements of radial deforma-
tion U;. Note that U, is measured at angle 6 clockwise from above from the axis
of maximum compression and that U, and Uj; are measured 60 and 120 degrees,
respectively, from U,, clockwise.

U, = Ry(cv — ds cos 26) (12)



Vol. 123, 1985 Design Parameters for Borehole Strain Instrumentation 63

Uz = Ry(cv — ds(—1/2 cos 20 — ,/3/2 sin 26)) (13)
Us = Ry(cv —ds(—1/2 cos 20 + \/3/2 sin 20)) (14)

"~ These equations are easily inverted to express v, s, and 6 in terms of U,, U,, and
Us as

_1(Ui+ U2+ Uy)

CLiad (15)
- P J3WUs—Uy) )
6=1/2 tan ((Ul A e (16)
s = _\/i\/[(Ul —U2)* + Uz = Us)* + (Us — Uy)*] (&)
d3R,
_ —(Usz—U,)

~ dRy,/3sin 20

Two conventions are possible for uniquely specifying s and 6. If s is kept positive,
6 can be limited to —90 to +90 degrees, and the sense of the shear is seen in the
rotation of the axis of maximum compression. Alternatively, the sense of the shear
can be incorporated in s by being allowed it to change sign, in which case 8 is restricted
to the range —45 to 45 degrees and does not refer to the axis of maximum compression.
The second convention proves to be the easier to use in practical earth-strain
monitoring.

The following observations apply to equations 15 to 17, for cases where radial
deformation can be expressed in the form of equation 1.

1. The areal strain is obtained from the apparent instrument areal strain
(Ui + Uz + Us)/3R by scaling with the instrument response factor c (see equation 10).

2. The angle 6 is independent of the gain factors ¢ and d and therefore independent
of the model used.

3. The far-field strain is obtained from the apparent instrument shear strain
V2[(U1 — U2)* + (Uz — U3)*> + (Us — U1)*1*2/(3R,) by scaling with the instrument
strain gain factor d (see equation 11).

As a reference point it is useful to have the results for undisturbed rock under
plane strain. Here

U, = Ry(v— s cos 20) (18)

so that from equation 9 it is seen that ¢ = d = 1, and hence the identification of
c and d as instrument strain response factors. Using equations 10 and 11 in equations
5 and 6 gives the effective instrument moduli for this case as

_(1—2v3)

K_(l—vg,)

K3 (19)
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G = 2G; (20)

Thus the rock is softer to compression under plane-stress conditions than in a
homogeneous stress, but unchanged under shear strain.

D. Models

1. The empty borehole Analysis of the empty borehole is useful when the instru-
ment is very much softer than the surrounding rock, so that the instrument deformation
follows the deformation of the hole wall. The radial deformation in such cases is well
known (for example, equation 21 of section 10.4 of JAEGER and Cook, 1976), and
for the case of plane stress it reduces to

Ur = (R1P/8G3)(xs + 1)(1 + 2 cos 206) 1)

By comparing this equation with equation 1 we identify a and b for this case as

a=4/1+v3) (22)

b=238/1+v3) (23)
and from equations 10 and 11

c=2/(1 —vj) (24)

d=4/1+v3) (25)

Here the instrument response factors are independent of the rigidity of the rock and
the borehole radius and are somewhat dependent on Poisson’s ratio for the rock.
The apparent instrument moduli for this case are, from equations 5 and 6,

_ (1—=2vy)

K 5 K; (26)
gL ;"3) G 27)

and are softer than the undisturbed rock (equations 19 and 20).

2. The one-ring model This case models situations where the grout is negligibly
thick, or where the grout has elastic properties identical with the host rock. The model
used is that of a single ring welded in an infinite plate, and the solution is essentially
provided in SAVIN (1961, Chap. 5). It is treated separately here from the more general
two-ring model bcause a simpler analytical result ensues.
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The constants a and b of equation 1 can be expressed as
a=a1(xl e 1)+b—1N12 (28)
b=as(x1 —3)N1 2 +bi+a-1(x1 + )N:2+b-3N* (29)

where a; and b; are functions, given in Appendix A, of the ring radii and the elastic
constants of the rock and of the ring, and where N; = R3/R;. With these equations
the instrument response factors ¢ and d can be obtained from equations 10 and 11.
Examination of the result reveals the following.
1. For G3 = G, and v3 = v, the results reduce to those of the empty borehole.
2. For R3 = R; the results again reduce to the empty-borehole case.
3. The rigidity of the ring and the rock enter the result only as the ratio G3/G;.
4. The ring radii enter the result only as the ratio R3/R;.

3. The two-ring model In this case the effect of the grout is included in a model
consisting of two rings welded concentrically in a hole in an infinite plate. The inner
ring represents the instrument wall, and the second ring represents the grout. The
more general n-ring case has been solved by SAvIN (1961, see Chap. 5). However,
six errors in his solution (at equations 5.8) and the complexity of the expansion of
his result have made it necessary to rederive the solution to obtain a useful set of
design equations. An outline of this derivation is given in Appendix B.

The coefficients a and b of equation 1 are found to be

a =41 —y1)a! — b, N;?] (30)

al
b=4[—a1_1N12(1+x1)+N—f2(3—x1)—b1_3N14~b{] (31)
where the a] and b} are members of a set of 22 complex quantities which satisfy

the set of 22 complex linear equations given in Appendix B. They are functions of
the Poisson ratios for each of the three regions and the radius ratios

Ni = R3/R;

N2 = R3/R>
and the rigidity ratios

e21 = G2/Gy

es1 = G3/Gy

This set of equations can be inverted numerically to obtain the coefficients in equations

30 and 31. The instrument response factors ¢ and d are then obtained from equations
10 and 11.
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Section 2. Typical instrument response

In this section the instrument response to strains in the host rock is calculated
for the three models presented in the first section, for typical values encountered in
practical instruments in the field.

Range of parameters

For an examination of the interaction of the various parameters involved in these
solutions a set of parameters has been chosen close to those used in instruments
installed in California (GLADWIN, 1984). The results of the various models will be
presented graphically as a series of parametric curves for each variable of interest
over a range of the independent variable which encompasses typical values for similar
installations. Where specific numerical values are needed for concise presentation of
results in this form, the parameters of this instrument will be used (G, =839 GPa
and vy = 0.283), butin all cases the results can be scaled to other instrument geometries.
Where possible all parameters are normalised as ratios.

G3/K3
1.5 1.0 0.5 0.0
4.0 ‘ _[
shear hydrostatic
% \
My
Etu /
2.0 typical rock
1 L
0.0 0.1 0.2 0.3 0.4 0.5

POISSONS RATIO ROCK

Figure 1
The dependence of the strain response factors on Poisson’s ratio for an empty borehole under plane stress.
The response factors are independent of other parameters. The top scale expresses the dependence in terms
of the ratio of the rigidity modulus of the rock (Gs) to the bulk modulus (K3). Values encountered for
typical rock are indicated.
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The empty borehole

The strain response factors are given by equations 24 and 25 and are plotted in
Figure 1 as a function of Poisson’s ratio for the rock. The scale shown at the top
of the figure in terms of G/K is useful in understanding the dependence of these response
factors on rock moduli. Thus a borehole in rock enhances the radial deformations
from the far-field strains by unequal factors of roughly 3 for typical rocks. Maximum
enhancement is 4 in both cases, with a minimum enhancement of 2 for hydrostatic
strains and 2.67 for shear strains. The response factors are equal only for v3 equal
to 1/3, where their value is 3. A range of Poisson’s ratio for typical rocks is indicated.

The one-ring model

The response factors for this model are given by equations 10 and 11, with
equations 28 and 29 for a and b, and are functions of the ratio of the rigidity moduli

p———typical rock ———| o
3.0
3 2.0 hydrostatic e
[
Q
T
%
&
1.0
0.0 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
G3/G1
Figure 2

The dependence of the strain response factors on the rock rigidity (expressed as a ratio of rock-to-instrument

rigidity, G3/G,) for the one-ring model for a stainless-steel instrument in intimate contact with the borehole

wall with wall thickness 99, of the borehole radius. Curves for the Poisson ratio of the rock from 0.2

to 0.3 (covering the normal range of rock) show that it has minimal and opposite effects for hydrostatic
and shear response.
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The dependence of the hydrostatic and shear response factors on the ratio of the outer (R3) and inner

(R,) instrument radii for the one-ring model. Several curves are shown for a range of rock rigidity of

0.01 to 1.0 of the instrument rigidity, with a region of typical rock rigidity indicated. As the radii ratio

approaches 1 or the rock modulus approaches that of the instrument material, the responses tend to those

of the empty borehole, small differences being due to differences in poisson’s ratio. For rock ‘softer’ than

the instrument, increasing the instrument wall thickness decreases the responses more significantly for
‘softer’ rock.

of the host rock and the material of the instrument, G3/G,, the Poisson ratios v; and
v3, and the radii ratio Ra/R,. Figure 2 shows the variation of the response factors
with the rigidity ratio, for R3/R; = 1.11 corresponding to installed stainless-steel
borehole instruments, with Poisson’s ratio of the rock equal to 0.25. For a typical
rock modulus (21 GPa) the response factors are 2.0 and 2.8 respectively. Shear
response is always greater than hydrostatic response; that is, the hole is stronger in
compression than it is in shear, and as the rock rigidity decreases, the shear response
decreases at a slower rate, so that there is still significant shear response at G3/G, =
0.03 when the hydrostatic response has dropped to 0.6. A region of typical rock shear
modulus (7 to 30 GPa) is indicated.

The variation of the response factors with instrument wall thickness (expressed
as the ratio R3/R,) is shown in Figure 3 with the rigidity ratio G3/G; as a parameter
and v3 = 0.25. The values obtained for R3/R; = 1 correspond to those for the empty
borehole, and for G3/G; = 1 there is only slight dependence on the radius ratio, this
arising from the different Poisson ratios for the instrument and the rock. In general,
increasing the radius ratio (increasing the instrument wall thickness) decreases the
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Figure 4
The ratio of shear to hydrostatic response factors as a function of the ratio of outer to inner radii of the
instrument, showing, for rock rigidity less than the instrument material rigidity, significant enhancements
of the shear response over the hydrostatic response. Poisson’s ratio for the rock is 0.25.
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Figure 5
The effect of the Poisson ratio of the rock on the response factors for the one-ring model for various
values of the ratio of instrument outer (R3) to inner (R,) radii. The empty-borehole curves (where
R3/R; = 1) and a region of typical-rock Poisson ratio are shown. Increasing Poisson’s ratio increases the
hydrostatic response but decreases the shear response. For all curves G3/G; = 0.26; that is, the rock rigidity
is approximately 22 GPa.
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responses for rigidity ratios less than 1, and this decrease is more pronounced for
the hydrostatic response factor. The shear response can thus be enhanced relative
to the hydrostatic response by increasing the instrument wall thickness, as is shown
in Figure 4, with larger enhancements possible for ‘softer’ rock. These results can
be related to a cylinder’s being stronger in compression than in shear.

Figure 5 shows the effect of the Poisson ratio of the rock on the response factors
for several radius ratios and for G3/G, = 0.26. The effect is similar to that encountered
in an empty borehole (see Figure 1).

The two-ring model

The instrument response factors for this model are given by equation 10 and 11,
with equations 30 and 31 for the values of a and b, and are functions of the rigidity
ratios G2/G; and G3/G,, Poisson’s ratio for each region and the radii ratios R3/R;
and R3/R;. The coefficients of equations 30 and 31 were calculated by numerical
inversion of equations B19 to B40 of Appendix B by means of the FO4AMF subroutine
from the NAG Fortran Library. This solution has been tested by selecting appropriate

G3/G1

g
(=3

58
bl
th

grout=2x rock

o
(=]

grout=1/2x rock

HYDROSTATIC RESPONSE FACTOR

0.0 0.1 0.2 0.3 0.4 0.5
G2/G1
Figure 6
The effect of the grout rigidity (expressed as the ratio of grout rigidity to the instrument material rigidity)
on the hydrostatic response of the two-ring model. Curves are shown for a common range of rock rigidities
(again expressed as a ratio of the rock-to-instrument rigidities) and for Poisson ratios of the rock and
grout equal to 0.25. A particular instrument geometry (R; = 56 mm, R, = 62 mm, R3 = 89 mm) has been
chosen for this example. The effect of the Poisson ratio of the grout is negligible and is shown by the
three closely spaced curves (v; = 0.1, 0.25, 0.4) for the case of rock rigidity 0.2 of the instrument rigidity.
It should also be noted that the response decreases for grout ‘stronger’ than the rock and increases
marginally for grout ‘softer’ than the rock.
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The effect of the grout rigidity (expressed as the ratio of grout rigidity to the instrument material rigidity)
on the shear response of the two-ring model. Curves are shown for a common range of rock rigidities
(expressed as a ratio of rock to instrument rigidities) and for Poisson ratios of the rock and grout equal
at 0.25. Instrument geometry is as in Figure 6. The slight effect of the Poisson ratio of the grout is shown
by the closely spaced curves (v2 = 0.1, 0.25, 0.4) for the case of rock rigidity 0.2 of the instrument rigidity.
Note that the response factor decreases rapidly if grout rigidity becomes significantly greater than rock
rigidity. On this figure the actual response factor is critically dependent on instrument and hole geometry.

parameters to reduce it in all possible ways to the one-ring model and the empty
borehole for comparison with the independently derived results for those models.
The effect of the grout rigidity on the response factors is shown in Figures 6 and 7
for several rock rigidities and for the instrument and borehole geometries encountered
in typical borehole strain meter applications. Poisson ratios for the grout and the
rock have been set equal at 0.25, except for the curves for G3/G; = 0.2, where the
effects of the Poisson ratio of the grout are shown to be small. As the grout rigidity
(and therefore its bulk modulus) decreases, the hydrostatic response factor increases,
to reach a maximum where the grout and rock rigidities are approximately equal.
As the rock rigidity is increased, the response increases, and the maximum occurs
for grout rigidity softer relative to the rock. The case for no grout is shown by the
curve ‘grout =rock’ where, as expected, the effect of v, disappears. A similar
dependence on the grout rigidity is seen in the shear response factor, but with the
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Figure 8
This figure illustrates the variation of the response factors with changes in the borehole radius, for constant
instrument geometry (Rz/R; = 1.107) and constant rock rigidity (G3/G; = 0.2 or G3 = 17 GPa) for the
two-ring model. The effect is shown for several values of the grout rigidity (expressed as the ratio of grout
rigidity G to instrument rigidity G,). For ‘softer’ grouts large enhancements of the shear response occur
as the borehole radius increases, due mainly to the coupling through of larger displacements to the fixed
inner radius. The effect on the hydrostatic response is less, and no significant enhancement occurs. In both
cases the responses tend to the one-ring model responses as the grout thickness decreases to zero
(R3/R; tends to Rz/R,).

differences that the maximum gain is obtained for grout much less rigid than the
rock and that the enhancement of the response compared with the grout-free case
is greater than for the hydrostatic response. Large enhancements of the shear response
over the hydrostatic response are possible for these low values of the grout rigidity,
but it is probably inadvisable to use them in field instruments, since the response
is highly dependent on the grout rigidity.

The effects on the hydrostatic and shear response factors of variations in the grout
thickness while the instrument geometry is kept constant are shown in Figure 8 for
several values of the grout rigidity. Here the rock rigidity is constant at 0.2 of the
instrument rigidity, and v, and v equal 0.25. Increasing the grout thickness has little
effect for grout rigidity close to that of the rock, and decreases hydrostatic response
for grout rigidity significantly different from that of the rock. The effect is much greater
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Figure 9
The effect on hydrostatic and shear responses of the two-ring model of varying the grout rigidity
(expressed as the grout-to-instrument wall-rigidity ratio G,/G, ) is shown with the borehole and inner instru-
ment radii constant (R3 = 89 mm, R; = 56 mm) is shown with the instrument wall thickness (indirectly
expressed as the ratio R3/R3) a parameter. Rock rigidity is held constant at 0.2 of the instrument material
rigidity, and Poisson ratios for the grout and rock are equal at 0.25. The curves can be compared with
those of Figures 6 and 7.

for the shear response, with large enhancements for grout ‘stronger’ than the rock
and reductions for the grout ‘weaker’. These effects are enhanced as the grout
thickness is increased.

Changing the instrument wall thickness while keeping the instrument inner radius
and the borehole radius constant is of practical interest, because it is the one parameter
over which there is some control in instrument design. The effects are best understood
by first examining Figure 9, where the response factors are plotted as functions of
the grout rigidity with the ratio R3/R; as a parameter. A general conclusion is that
decreasing the wall thickness increases the gains, with larger effects for ‘softer’ grout.
By appropriate parameter selection significant enhancement of shear response over
hydrostatic response can be obtained. In Figures 10 anu 11 the hydrostatic and shear
responses are given as functions of the ratio R3/R; with G2/G, as a parameter. Two
limiting cases can be seen: first, where the instrument fills the hole (R3/R; = 1.0), and
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This figure shows the dependence of the hydrostatic response for the two-ring model on instrument wall

thickness (expressed as Ri/R;) for several values of the grout rigidity. The curves are for constant

borehole and instrument inner radii (R; =89 mm, R; = 56 mm) and constant rigidity of the rock of

17 GPa (0.2 of the instrument rigidity), and allow optimization of instrument wall thickness in a

pre-existing borehole. Poisson’s ratio for the grout and rock are equal at 0.25. Except for soft grout, where

the effects are more complex, increasing the instrument wall thickness decreases the response. These results
should be compared with those of Figure 11 for the shear response.

second, where the instrument wall thickness is zero. Both can be calculated and
understood by the one-ring model with appropriate parameters.

Application to practical instruments

The accurate application of these results to borehole instruments requires that
the following conditions be met.

1. The grout is ‘welded’ to the instrument outer wall and the borehole wall.

2. The instrument is central in the hole; eccentric location of the instrument in
extreme cases will change the instrument response factors.

3. The hole and the instrument are cylindrical.

4. The region of rock around the instrument is representative and well coupled
to the far-field strains of interest.
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Figure 11
This figure shows the dependence of shear response for the two-ring model on instrument wall thickness
for several values of the grout rigidity, for the parameters of Figure 10. Except for very soft grout, the
effect of increasing the instrument wall thickness is to decrease the response.

5. The instrument is installed in a homogeneous, isotropic environment, and there
are no significant strain gradients across the borehole.

6. The instrument measures radial displacement only of the inner instrument wall.

7. The strain changes encountered result from pure plane stress.

8. The host rock is linear if its elastic constants are determined from destressed
core samples.

Even if these conditions are not met strictly, the results are useful in understanding
the complex interaction of the components of an installed borehole instrument. Where
the conditions are met, the results can be used to allow accurate measurements of
hydrostatic and shear stress or strain changes in a horizontal plane, provided the
elastic constants of the rock and the grout can be reliably measured from samples.

Conclusions

The foregoing series of graphical presentations illustrates the sensitivity of instru-
ment strain response to various combinations of parameters available to the instru-
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ment designer in the fabrication of an optimal instrument for a particular application.
It is clear that an instrument implant cannot be optimised without adequate informa-
tion on the basic elastic parameters of the host rock, so that core sampling of possible
sites is essential in the production of a well matched instrument. The graphical presen-
tations in some cases involve choice of particular parameters, so that the effect of
a particular independent variable can be conveniently illustrated. This approach in
no way limits the range of validity of the solutions presented, and the analytical
solutions for each of the cases shown is readily available from the equations in the
text or the appendices. The equations can easily be modified for applications involving
plane strain.

Appendix A. The one-ring model

From equation 5.15 of SAvIN (1961) the constants a and b of equation 1 may be
expressed as the following, where N; = R3/R;.

(Al) a:a;(x1—1)+b_1N12
(A2) b=as(y—3)N72+bi+a-1(x1 + )N:>+b_3N,*

The coefficients of these equations may be written as

(A3) a-1 = Fo(Fy + F53)

(A4) 01=F2F1[2F1—'F2(F1—F5)]
(AS) az = —F9F4(F2 — l)Fl

(A6) - b_3 = —Fo(Fy + FFs)

(A?) b-; = 2F2t11

(A8) by = FoF,[F1(4 — 3F3) + Fs]

where

(A9)  Fo= Gs/G,
(A10) Fi=Fo—1

(All)  F; = Ny?

(A12) F3 = y1Fo

(A13)  Fo= N

(A14) Fs=1+Fs

(A15)  Fe=N,®

(A16) Fy=1+7s

(A17) Fg = FsFg

(A18)  Fo=2F,/D;

(A19) Dy =(x3+ Fo)F2[F1(3F4 —6F; +4)+ Fg] + (x1Fo — x3)F1 + Fs)
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Appendix B. The two-ring model

According to MUSKHELISHVILI (1953), the stress state and the displacements for

the two-ring system can be solved in terms of two complex functions ¢(z) and y(z),

where z = re'’. SAVIN shows that in the plate these functions have the following form
(SAvIN, 1961, equations 5.2),

B) %) = polz) + "Ci 2 w(R/2)

B)  ¥3) = Yold) — fciﬁ-xm/z)*

where C is a constant, R is the hole radius, and ¢o(z) and (z) are the stress functions
for the plate when the hole is absent. They may be expressed (SAVIN, 1961, equation
5.1) as

B3)  golz) = iciLk(z/R)"

(B4) Yo(z) = —iC 'Z::Mk(z/ R)*

For tension P applied along the X axis at infinity we have (SAVIN, 1961, equation
511)

(BS) @o(2) = (P/4)z
(B6) Yol2) = (—P/2)z

so that

(B7) Ly =(P/C)Ri(—3)
(B8)  M;=(P/C)Ri(—})

and the other terms L, and M, are zero.

For the rings (numbered 1 and 2 from the inside) the functions have the following
form (SAvIN, 1961, equation 5.3):

B9  ¢iz)=iCY AR}

B10) Y@= —iC ¥ Bi(z/R}



78 Michael T. Gladwin and Rhodes Hart PAGEOPH,

In terms of these stress functions the displacements can be calculated (SAvIN, 1961,
equation 5.7) by

S U .6
BL1) U, ~ iUy = 5=[x02) — 2= — (2)]e
which for the inner ring becomes

: 1 = do'(z :
B1D) U} =iV} = 5o Dud'e) - 2202 - yiee”

The stress can be calculated (SAvVIN, 1961, equation 5.7) by

do(a) d<p(z)) g (z_dz(p(z) dw(z))

(B13) Ur_”rﬂ=(dz = T

When the boundary conditions B14 to B18 are applied to the rings,

(B14) (O’,} = it}3)31 =0

(BIS) (0’,1 = f‘l’,}e)gz = (0',2 - iffg)ﬂz
(B16) (07 —it)rs = (07 — it}y)r3
(B17) U}l —iUdre=(U?X—iU2)x2
(B18)  (U?—iUfrs =(U>—iU3)rs

a set of 22 nonzero coefficients results, these being

AJ— 1> Ajla AJZ) A‘f;
Bi,, B, B.,, Bj, B}

-1
ﬁ*‘3; B“Zp ﬁ—l
forj=1,2.

The real and imaginary parts of these coefficients are related by two sets of 22 linear
nonhomogeneous equations arising from the boundary conditions. These equations
are a special case of equations 5.8 of SAvIN (1961) for n rings, with errors removed.
The rederived set for the two-ring case is given in equations B19 to B40, where
€;j = G./ G e

(B19) 24! — N;2Bl, =0

(B20) 24! — 242+ N,2BL, — N,2B2, =0

(B21) 242+ B%2, — -, =2L,

(B22)  e21(x1 — 1)A] — (x2 — 1)A} — e21N,*BL | + N,?B2, =0
(B23)  e3x(y2—1)A} —e32B%, +P-1=Li(xa—1)

(B24) AL+ N*BL,=0
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(B25) A2 — A2+ N,*B!, — N;“Bz_z =0

(B26) 24B2,-F ;=

(327) 2e21A2—2A2—e21—e21szB(1,+szB§=0
(B28) ex1)14} —_x;A% —e1N*BL, + N2432_2 =0
[B29) 232x2A%—€32.§£2+H—2 =0

(B30) 242-B2=0

(B31) Ni*4L, + A3+ N°BL ;=0

(B32) —N;*4Y,+341-N;?B1=0

(B33) N*AL, + A} — Ny*4%, — A3+N,°B%,=0
(B34) —N*4A%, +3A43+ N,*4%2, —34%3— N2?B} + N»?B;*=0
(B35) A%, +A43+B%2;—-f-3—d-1=0

(B36) —A2, +343—B>4+d_,=—M,

(B37) “321X1N2 A +321X1A3+N24A_ 2A3—621N2 B£3+N36323 =0
(338) enxlNg Al_ + 3821143 X2N2 AZ_ — 3A3 —_ e;lszB + szBz 0
(B39) —832112_1 +e32x2A§~e3;§2_3+B-3+&_1 =0

(B40) e3z)2A2% + 3e3245 —e32Bf — y30-1 = — M,

With equations B9 and B10 used in equation 12 and z set to re', the radial displace-
ment can be expressed in terms of these coefficients as the following, when n = R/r:

1 Zl _ e-—iﬂ - e—|28
(B42) U,—Eszz[(—tC;)(l)(A1 el + — - L+ A+ Ay —5 )—

A if 2i0
(iC)( AL jne=i20 4 21 +2Aze:,_ +3A3e )+

2i0
. : , e
(I'C)(B‘_sirf‘e'z"il + B! ,n%e""® 4+ B! \n+ Ble” + B} T):|

When equations B19 to B40 are inverted to give the coefficients in this equation,
the only nonzero terms are found to be those independent of 6 or those containing
cos 260. Writing

(B43) a = —C—Im(A P

i G

the radial displacement can be expressed as

RP [ 41 — y1)a} — b |n Al
861 n

(B44) U, =

1 1
4(—a1_,n(1 —X1}+z—g(3—xﬂ— 3 -b—) cos 20]
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For displacements evaluated at r = Ry so that n = N this reduces to

RP
8G. (a + b cos 260)

(B45) U, =

where

{1—
a = 4|:TIX1)—Q} _bl_lle

a3

N,?

b=4[—a£lN12(1+X1)+ (3""x1)—'bl_3Nj4_bii|.
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